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ABSTRACT

We present an approach for performance evaluation of determinis-
tic video trackers without ground-truth data. The proposed approach
detects if a tracker is correctly operating over time using two main
steps. First, it transforms the output of the localization step into a
distribution of the target state, which emulates a multi-hypothesis
tracker. Then, the uncertainty of such distribution is estimated to de-
termine the time instants when the tracker is stable. A time-reversed
analysis is used to identify tracker recovery after unsuccessful op-
eration. The proposed approach is demonstrated on the well-known
MeanShift tracker. The results over a heterogeneous dataset show
that the proposed approach outperforms the related state-of-the-art
methods in presence of tracking challenges such as occlusions, illu-
mination and scale changes, and clutter.

Index Terms— performance evaluation without ground-truth,
visual tracking, uncertainty estimation

1. INTRODUCTION

Video tracking faces many challenges related to geometric (pose,
scale, occlusions) and photometric (clutter, appearance, illumina-
tion) factors [1], which lead to tracking failure (i.e. when the tracker
loses the position of the target). Standalone evaluation operates with-
out the need of ground-truth data allowing to detect tracking failures
and recoveries after failure (i.e. when the tracker lock back on the
target after a time interval of failure).

Standalone evaluation approaches for multi-hypothesis tracking
have proven their superior performance as compared to single-
hypothesis ones [2][3][4]. Multi-hypothesis approaches require
estimating the posterior distribution of the tracked target and can-
not be applied directly to evaluate deterministic (single-hypothesis)
tracking. Some works addressed this limitation through adapta-
tions of deterministic tracking. For example, [2][5] applied the
time-reversibility constraint to MeanShift tracking [6] as the spatial
overlap between the target estimations of the generated trajectory
and its reversed version. For template-based tracking [7], [8] pro-
posed a probabilistic view of single-hypothesis tracking and [9]
estimated the uncertainty of the posterior distribution by a Gaussian
fitting process on the tracker correlation surface. However, these
approaches exhibit limitations related to error accumulation [5],
computational cost [2] or applicability to low complexity videos
only [8][9].

In this paper, we present a standalone performance evaluation
approach that adapts a multi-hypothesis strategy [4] to deterministic
tracking by converting its single-hypothesis localization process into
a distribution of the target state which emulates a multi-hypothesis
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Fig. 1. Scheme of the proposed approach for standalone evaluation
of deterministic video trackers. I;: input video sequence, M;: out-
put of the localization step of the tracker, Q;: the tracker evaluation
result (successful, unsuccessful).
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tracker. Then we estimate the uncertainty of such distribution to de-
tect its temporal stability and use time-reverse analysis for checking
tracker recovery after failure as in [4]. We refer to the proposed
approach as Deterministic Adaptive Reverse Tracking Evaluation
(DARTE). We demonstrate the proposed approach with the Mean-
Shift tracker [6] and compare the results with related state-of-the-art
approaches. The scheme of DARTE is depicted in Fig. 1.

This paper is organized as follows: Section 2 and 3 define,
respectively, the multi-hypothesis distribution estimation and the
tracking evaluation of the proposed approach; Section 4 presents the
experimental results and Section 5 concludes this paper.

2. MULTI-HYPOTHESIS ESTIMATION

Let x; be the tracked state generated through a deterministic local-
ization process on a n-dimensional matrix M; that defines where the
target is more likely to be located. In this work, we focus on the case
when the state is only composed of the target position and therefore,
M (u,v) is a 2D surface obtained as:

Mt(’u/,’l)) :f(Ihmt—l:B) (1)
where the pair (u, v) defines each 2D position of My (u,v), I; is the
video frame at time ¢, x¢—; is the tracked state at time ¢t — 1, (3 is
the model of the target and f(-) is the process to generate M (u,v)
according to a similarity function (e.g., the histogram-based color
similarity map of the MeanShift tracker [6] or the sum of squared
differences of the template-based tracker [7]).

The aim of the proposed approach is to evaluate M;(u,v) for
detecting when the algorithm is following the target (successful) or
locked on background (unsuccessful). M;(u,v) is converted into
a distribution of the target state, p(x+/z1.¢), where z1.; are the ob-
servations up to time ¢, to emulate the output of a multi-hypothesis
tracker, thus allowing the use of [4]. We evaluate the tracking data by
analyzing the distribution uncertainty and using an additional tracker
in reverse direction to check tracker recovery after a failure.

For estimating the multi-hypothesis distribution of the target
state p(x+/z1:+) from My (u, v), we start from the probabilistic view
of deterministic tracking [8], which demonstrates that p(x:/z1:¢) is
proportional to the sampling of Mz (u, v):

N
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Fig. 2. Example of the (a) 2D surface M (u, v) for target localization
and (b) its smoothed version M (u, v) using a Gaussian kernel (b =
9 and o = 3) for the MeanShift tracker [6].

where w;, i and N are, respectively, the weights, locations and the
number of samples obtained from M;(u,v) at time ¢. However, [8]
does not describe the extraction process for the samples and weights.
We propose to develop a sampling strategy for M, (u,v) to ob-
tain the locations, xi, and weights, wi, of the samples in order to es-
timate the multi-hypothesis distribution required for the standalone
evaluation of tracking data. For notation simplicity, we have omitted
the time index ¢ from the following equations of this subsection.
First, we reduce the effect of impulsive noise in the video frames
(consequently in M (u,v)) by using a 2D Gaussian low-pass filter:

Ms(u,v) = M(u,v) * Kg(h,o), 3)

where K¢ is the Gaussian kernel with & size and o standard devia-
tion. An example of this noise reduction is shown in Fig. 2. Then, we
create a confidence map, C(u, v), that represents high (low) proba-
bility of target location with values close to 1 (0):

“
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where f(-) is a function that maintains (f(z) = x) or reverses
(f(x) = 1 — x) if Ms(u,v) indicates the similarity of the video
frame with the target model with, respectively, high (e.g., high color
similarity of MeanShift [6]) or low (e.g., low sum of squared differ-
ences of template matching [7]) values. Observe that the argument
of f(-) in (4) defines the scaling of the Mg (u, v) values to the range
[0, 1]. Thus, f(-) assures that C'(u, v) values close to 1 indicate high
similarity between the video frame and the target model.

After extracting C(u, v), we obtain a sampled map that defines
the multi-hypothesis distribution, C'p (u, v), as:

Cp(u,v) = C(u,v) - s(u,v), (5)

where s(u,v) is the sampling signal determined by the sampling
strategy defined as:
s(u,v) = Z S(u—u',v—0'), 6)

(ut,vi)€EAs

where z° = (u*,v") is the i*" sample of the multi-hypothesis distri-
bution derived by the sampling structure A.

For defining A, we assume that M (u, v) represents the search
area composed of the 2D estimated target location, M (u,v), and
the rest of the search area, Ma2(u,v). Hence, we are interested in
measuring the amount of information relevant to the tracking eval-
uation task that is included in M (u,v) and Ma(u,v). Moreover,
we want to study whether the estimated target center and its sur-
roundings allow to evaluate the tracker or the whole information
in M (u,v) is required for this task. We propose the following

sampling strategies for covering the previously mentioned aspects:
(i) all the locations of M (u, v) (So); (ii) around the peak of M (u, v)
as proposed by [6](S1); (iii) all the locations of M (u,v) and one
out of four locations of Ma(u,v) (S2); (iv) all the locations of
M (u,v) (Ss); (v) all the locations of the log-polar transform [7] of
M (u,v) (S4) and (vi) all the locations of the polar transform [7] of
M (u, v)(Ss).

The sample weights of the multi-hypothesis distribution, w’, are
extracted from C'p(u, v) considering that each sample can have dif-
ferent importance (e.g., depending on its distance to the estimated
target center) by using a weighting kernel:

Cw (u7 U) =Cp (Ua U) : K(uv U)? @)

where K (u,v) is a non-negative real-value function that assigns a
value in the range [0, 1] for each (u,v). For choosing K (u, v), we
consider the Uniform (U) and Epanechnikov (E) kernels [1]. The for-
mer assigns an equal weight to all samples whereas the latter gives
a weight inversely proportional to the distance between each sample
and the center (in our case, we use the maximum value for S; sam-
pling and the estimated target center for So, S2, S3, S4 and S5 sam-
pling). Finally, we obtain the weights w* by normalizing Cw (u, v):

w' = Cw(ui,vi)/ZCW(u,v). (8)

u,v

3. TRACKING EVALUATION

After estimating the multi-hypothesis distribution, we compute its
spatial uncertainty at each time ¢ as:

St = m7 (9)

where X is the covariance matrix of p(z+/z1:¢) [9], det(-) is the
determinant of a matrix and d is the number of dimensions of x;. We
consider that the deterministic tracker only estimates the 2D location
of the target center maintaining its size constant (d = 2).

For identifying when the tracker is stable (i.e., it is following
the target), we study the changes of S; within a time window of
length A\. We compute two relative variations of uncertainty for the
change of S;_ with respect to S; and vice-versa as defined in [4].
The former indicates low-to-high uncertainty changes whereas the
latter represents high-to-low uncertainty changes. Two time window
lengths are used for considering short-term and long-term changes
(A1 and A2). As a result, four signals are computed by combining
the two relative variations and the two window lengths. Then, they
are thresholded for detecting the uncertainty transitions with three
thresholds (71, 7 and 73) as proposed in [4]. Finally, these detec-
tions are combined by means of a finite-state machine to decide the
tracker condition: focused on the target, scanning the video frame
for the target or locking on the target after a tracking failure [4].

Then, we use time-reversed analysis to check the tracker recov-
ery when it focuses on an object after unsuccessful operation as it
might be on a distractor (background objects with features similar
to those of the target). This analysis is based on applying a tracker
in reverse direction from this recovery instant until a reference point
(the last time instant when the tracker was successful) [4]. Effective
tracker recovery after failure is determined by thresholding (with
74) the spatial overlap between the tracker to be evaluated and the
reverse tracker at the reference point. Note that the time-reversed
analysis is required as the uncertainty is only able to determine if the
tracker is following an object that might be the target or a distractor.



| Dataset [ Target [ Size [ Characteristics [
CAVIAR P1-P4 | 384x288 IC, SC, C
PETS2001 P5-P7 | 768x576 SC,0,C
PETS2009 | P8 —P14 | 768x576 0,C
VISOR F1-F2 | 352x288 SC,C,0
Table 1. Summary of the evaluation dataset (Key. SC: Scale

Changes. IC: llumination Changes. O: Occlusions. C: Clutter.)

Fig. 3. Target initializations used in the evaluation dataset. (From
top-left to bottom-right) pedestrians: P1, P2, P3, P4, P5, P6, P7, P8,
P9, P10, P11, P12, P13 and P14. Faces: F1 and F2.

Finally, we combine the tracker condition and the time-reversed
analysis using another finite-state-machine [4] to determine the
tracker status between successful and unsuccessful. The former
corresponds to the instants when the tracker is focused on the target
(initial status of the tracker or after a correct recovery from tracking
failure). The latter describes the case when the tracker is scanning
the video frame or is focused on a wrong target (after an incorrect
recovery from a tracking failure).

4. EXPERIMENTAL RESULTS

We evaluate the proposed sampling strategies and the overall ap-
proach (DARTE) for the widely used MeanShift tracker [6] on
sequences from PETS2001', CAVIAR?, PETS2009° and VISOR*
datasets (Table 1). The target initializations are shown in Fig. 3.
We use ROC analysis to measure the performance of the stan-
dalone evaluation (i.e., the detection of successful tracker operation)
as the similarity between the obtained values and a ground-truth
temporal segmentation. This segmentation defines the successful
(unsuccessful) case when the spatial overlap between estimated and
ground-truth target location is higher (lower) than 30%. For the the
change detection analysis of S;, we empirically defined 7 for each
test and derived the other two (72 = —71 and 73 = 71/2). We
used the values Ay = 10 and A2 = 40 for the time window length.
For checking tracker recovery, we set the value 74 = 0.8. For the
smoothing kernel Kg, weused h = 9and o = 3.

Thttp://www.cvg.rdg.ac.uk/PETS2001/
Zhttp://homepages.inf.ed.ac.uk/rbffCAVIARDATA 1/
3http://www.cvg.rdg.ac.uk/PETS2009/
“http://imagelab.ing.unimore.it/visor/

S;‘r‘;f;g;g So | So | S| S | Ss | Ss| Sulsel|ss|ss
W. Kernel| U E U U U E U E U E
Param 7, |0.120.13 | 0.15 [ 0.18 | 0.15 0.15 | 0.99 [ 0.90 [0.12 | 0.16

AUC [0.719]0.787]0.753]0.802]0.867/0.832]0.808/0.815(0.7550.786

Table 2. DARTE results for the MeanShift tracker (Key. AUC: Area
Under the Curve. S;: Sampling strategy as defined in Sec. 2. U:
Uniform. E: Epanechnikov.)

Approach | AUC Execution time (s)
mean [ max [ min
DARTE | 0.867 0.077 £ 0.024 24.406 | 0.003
TIM [5] | 0.576 0.852 +£0.115 1.100 | 0.450
FBF [2] | 0.826 | 35.305 £+ 18.120 | 95.920 | 0.550
ENT [8] | 0.666 0.005 £ 0.002 0.034 | 0.001
ESU[9] | 0.709 0.004 + 0.003 0.096 | 0.002

Table 3. Comparison of DARTE with state-of-the-art approaches
for the MeanShift tracker. (Key. AUC: Area Under the Curve.
TIM: frame-by-frame reverse-tracking [5]. FBF: full-length reverse-
tracking [2]. ENT: entropy [8]. FSU: spatial uncertainty [9].)

Moreover, we compare DARTE with related standalone tracking
evaluation approaches based on frame-by-frame reverse-tracking us-
ing template matching (TIM) [5], full-length reverse-tracking using
the same trackers for forward and reverse analysis (FBF) [2], entropy
of M (u,v) (ENT) [8] and spatial uncertainty of M (u, v) (FSU) [9].

The results for the proposed sampling strategies S; and weight-
ing kernels are listed in Table 2. The use of the Gaussian kernel
K is justified by the improvement achieved for the sampling strat-
egy So, the Uniform weighting kernel and the threshold 71 = 0.12,
obtaining an Area Under the Curve (AUC) of 0.719 and 0.655 for, re-
spectively, with and without smoothing. Sampling around the maxi-
mum value of M (u, v) (S1) got the worst results demonstrating that
the location of this maximum value lacks smoothness over time as
it might be affected by noise, appearance changes and distractors.
Sampling in the search area (So, S1, S2, S4 and Ss) is less robust
as it may contain distractors. Hence, S3 presented the best results as
it is restricted to target location. Among the weighting kernels, the
Uniform kernel is preferable to the Epanechnikov one when no data
of the search area are contained in the extracted samples.

The comparison with the selected state-of-the-art approaches is
summarized in Table 3. TIM got low results due to its adaptation to
tracking failures as the tracker tends to focus on distractors and there-
fore, TIM compares wrong target estimations with wrong reverse
analysis. FBF obtained high performance. However, it is affected by
the drift of the target estimation and, therefore, the accuracy of the
reverse analysis is reduced. Its main limitation is the high compu-
tational cost with exponential dependency on the number of frames.
For ENT, as tracking degrades and clutter appears, the unimodality
of the posterior distribution is converted into multimodality. Thus,
ENT had low performance. FSU showed that using the uncertainty
of M (u, v) only is not accurate as it solely indicated that the tracker
was focused on an object (that could be either the target or a distrac-
tor). DARTE improved the selected approaches solving the above
mentioned problems whilst achieving a bounded execution time.

An standalone evaluation example for F1 target is shown in Fig.
4. As the ground-truth error signal indicates, the tracker failed four
times being not capable of estimating the correct target location due
to occlusions with the blue blackboards (the first and third ones), an
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Fig. 4. Ground-truth error and standalone evaluation results for F1 target of sequence VISOR_I (frames 100, 125, 300, 375, 425 and 450)
with the MeanShift tracker. Ground-truth data and tracking results are represented as green and red rectangles, respectively. The ground-truth
error is measured as the spatial overlap between estimated and ground-truth target. (Key. TIM: frame-by-frame reverse-tracking [5]. FBF:

full-length reverse-tracking [2]. ENT: entropy [8]. FSU: spatial uncertainty [9].)

occlusion with a similar moving target (the second one) and quick
target movement (the fourth one). TIM showed its ability to de-
tect quick changes of target position with high values (first frames
of each tracking error). However, it demonstrated its adaptation
to tracking failures by having low values for the first, second and
fourth tracking errors (when the tracker was focused on background
objects). Thus, it had low performance. FBF presented good re-
sults correctly indicating the tracking failures. However, it failed
by detecting no tracking error for frames 510-525 and two tracking
errors at frames 200 and 245. ENT obtained low performance show-
ing lower values for the first and fourth errors whereas high values
for the second and third errors. Moreover, it also presented high
(frames 200-250) and low (frames 250-300) values for the success-
ful tracking case (between frames 200 and 250). FSU also presented
low performance having high and low values for successful and un-
successful tracking. DARTE demonstrated its superior performance
detecting the four tracking errors. However, a delay for identify-
ing the second failure was observed due to the required amount of
uncertainty change for detecting that the tracking data is not stable
(controlled by 71).

5. CONCLUSIONS

We have presented an approach for standalone performance evalua-
tion of deterministic trackers. The proposed approach is based on es-
timating a multi-hypothesis posterior distribution from the data pro-
vided by deterministic tracking, analyzing its uncertainty for detect-
ing stable tracking data and using the time-reversibility constraint
for checking tracker recovery after losing the target. The proposed
approach was validated on the widely used MeanShift tracker over
standard sequences. The results showed that the proposed approach
outperforms the selected state-of-the-art approaches.

As future work, we will focus on automatic thresholding to de-
tect changes in the uncertainty of tracking data and the use of the
proposed approach for other deterministic trackers.
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